조화 맥동 유체를 포함하는 직관의 강제진동응답 해석

Forced Vibration Analysis of Pipe Conveying Harmonically Excited Fluid

오 준석* · 정의봉** · 서영수*
Jun-Seok Oh, Weui-Bong Jeong and Young-Soo Seo

Key Words : Forced response, Pipe conveying fluid, Harmonically excited fluid, Parametric resonance

ABSTRACT

It is well known that the natural frequencies of the pipe come to be lower as internal fluid velocity and pressure increase, and the pipe will be unstable if the fluid velocity is higher than critical velocity. But even if the velocity of the fluid below the critical velocity, resonance will be caused by pulsation of the fluid. So it should be also taken into consideration that the effect of pulsating fluid in pipe design. The research of the piping system vibration due to a fluid pulsation has been studied by many people. But almost is dealt with determining the boundary between stable and unstable region without analyzing forced response in the stable region. In this study, not only stability analysis but also forced response analysis, which is caused by harmonically excited fluid especially, is conducted.

1. 서론

유체를 수송하는 배관은 산업 전반에 걸쳐 매우 광범위하게 사용되어지고 있으며, 또한 내부 유체에 의한 배관계의 진동, 소음문제도 많이 발생되고 있고, 이를 해결하기 위해 배관의 유체유발 진동, 소음과 관련하여 많은 연구가 이루어 지고 있다.

내부 유체속도와 압력이 증가함에 따라 배관의 고유진동수가 낮아지고, 속도가 일정속도 이상일 때 단순진동 혹은 양단고정 등의 경계조건하에서의 횡 현상과, 한단고정 탑판자유 등의 경계조건 하에서의 퓨리아 현상등은 많이 알려져 있다.

하지만 유체의 속도가 일정속도 이하일 때에도 유체의 맥동 성분으로 인해 공진현상이 발생될 수 있으며 배관의 설계에 있어서 유체의 맥동 또한 중요한 고려사항중 하나로 들어야 한다.

유체 맥동에 의한 배관계의 진동에 대한 연구는 그 역사가 길어 보이지만 많은 사람돌에 의해 연구되어지고 있다. 그러나 주로 안정성 해석을 통한 공진영역과의 경계에 대한 것이 주 내용으로 안정영역에서의 주파수에 따른 강체 진동 응답 특성에 대한 연구는 거의 없다.

본 연구에서는 특정주파수의 맥동성분을 갖는 유체를 포함하는 배관의 안정성 해석뿐 아니라 같은 주파수의 가진력에 의한 진동 응답도 근사적으로 구하여 결과를 비교, 고찰해 보고자 한다.

2. 운동방정식

2.1 해석모델

해석하고자 하는 모델은 길이가 L 인 양단고정 수직배관으로써 Fig 1에 나타내어져 있다.

L은 배관의 전체 길이이고, $w(x,t)$는 배관의 임 구부로부터 x 만큼의 위치에서의 횡 변위이며, U는 유체의 속도로써 특정 주파수로 맥동하 는 성분을 포함하고 있음을 나타내고 있다.

\[U(t) = U_0 + U_1 \cos \Omega t \]

\[y \]

\[x \]

\[w(x,t) \]

\[L \]

\[g \]

Fig 1. Pipe model

* 부산대학교 대학원 기계설계공학과
** 부산대학교 기계공학부
2.2 운동방정식

배관길이에 비해 단면적이 작은 경우에 대해서 오일러 보의 이론을 적용하고, 힘 방향 변위가 주 작다고 가정하면 미소 변형 후 dx 구간에서의 유체 및 배관 요소를 Fig 2.와 Fig 3.에서와 같이 나타낼 수 있다.

여기서 A는 배관의 내부단면적, S는 내부단면적의 원주길이, m은 배관의 단위길이당 질량, ρ는 유체의 밀도, p는 압력 단면에서의 압력, r는 전단응력의 점선방향 성분, f는 전단응력에 의한 수직방향으로 단위길이당 작용하는 힘, T는 배관에서의 인장력, G는 배관에서의 전단력, c는 배관의 감쇠계수, g는 중력가속도를 나타낸다.

운동방정식의 유도를 위해 유체요소와 배관요소에서 x 및 y 방향 힘의 평형식을 쓰면 다음과 같다.

\[-A \frac{\partial p}{\partial x} + rS + \rho Ag - f = \rho A \frac{dU}{dt} \]
\[f - A \left(\frac{\partial q}{\partial x} \right) - rS \frac{\partial w}{\partial x} = \rho A \left(\frac{\partial \phi}{\partial t} + U \frac{\partial \phi}{\partial x} \right)^2 \]

위 식들로부터 공통되는 부분을 소거하고 압력과 속도의 관계식을 이용하여 압력항을 속도항으로 대체한 뒤 전체 운동방정식을 유도함으로써 다음과 같이 된다. 이때 출구에서의 압력과 인장력은 없다고 가정한다.

\[\frac{\partial T}{\partial x} + rS + mg + f \frac{\partial w}{\partial x} = 0 \]
\[\frac{\partial G}{\partial x} - f + \frac{\partial}{\partial x} \left(T \frac{\partial w}{\partial x} \right) + rS \frac{\partial w}{\partial x} - c \frac{\partial w}{\partial t} = \frac{m}{\partial t} \frac{\partial ^2 w}{\partial t^2} \]

3. 식의 무차원화 및 이산화

수식의 일반화를 위해 앞에서 유도한 운동방정식을 무차원 방정식으로 변환하면 다음과 같다.

\[\eta'''' + (u^{1/2} \dot{u} - \gamma) (1 - \xi) \eta'' + 2 \beta^{1/2} \nu \eta' + \eta' + \sigma \eta + \nabla = 0 \]

이제의 무차원변수들은 다음과 같다.

\[\xi = \frac{x}{L}, \quad \eta = \frac{w}{L}, \quad \tau = \left(\frac{EI}{\rho A + m} \right)^{1/2} t \]
\[\nu = \frac{pA}{LU}, \quad \beta = \frac{\rho A}{\rho A + m}, \quad \gamma = \frac{(\rho A + m)^{1/2}}{EI} g \]
\[\sigma = \frac{ct^2}{[EI(\rho A + m)^{1/2}]} \]

위 운동방정식으로부터 응답을 구하기 위해 우선 무차원 변위인 \(\eta \)를 Galerkin 근사에 의해 이산화된 향으로써 표현할 수 있으며 다음과 같다.

\[\eta(\xi, \tau) = \sum_{i=1}^{N} \phi_i(\xi) \alpha_i(\tau) \]

여기서 \(\phi_i(\xi) \)는 유체가 없는 상태에서 배관의 고유함수로써 양단고정 경계조건일 경우에 다음과 같이 나타낼 수 있다.
\[\phi_j(\xi) = \cosh(\lambda_j \xi) + \cos(\lambda_j \xi) - \sigma_j \left(\sinh(\lambda_j \xi) + \sin(\lambda_j \xi) \right) \] (8)

이기에서 \(\sigma_j \)와 \(\lambda_j \) 는 아래쪽으로 구할 수가 있다.

\[\sigma_j = \frac{\sinh(\lambda_j L) - \sin(\lambda_j L)}{\cosh(\lambda_j L) + \cos(\lambda_j L)} \] (9)

\[\lambda_j = (2j+1) \frac{\pi}{2L} \] (10)

이때, \(\lambda_j \) 는 배관의 무차원 고유치이다.

또한 조화가전용을 포함한 유체의 속도식은 다음과 같이 표현할 수 있다.

\[u(\tau) = u_0 + u_1 \cos \omega \tau \] (11)

이기서, \(u_0 \)는 평균 속도 성분이고 \(u_1 \)은 속도폭폭, \(\omega \)는 유체 박동 주파수, \(\tau \)는 무차원 시간이다.

식(7)과 (11)을 운동방정식 (6)에 대입하고 전체식에 \(\phi(\xi) \)를 끌어낸 전 구간 [0, L]에 대하여 적분을 취하면 고유함수인 \(\phi(\xi) \)의 직교성에 의해 운동방정식은 다음과 같이 나타내어진다.

\[\ddot{\mathbf{a}} + \{C + 2\beta^{1/2}(u_0 + u_1 \cos \omega \tau)P\} \ddot{\mathbf{a}} + \{L + [(u_0 + u_1 \cos \omega \tau)^2 - \gamma - \beta^{1/2}u_1 \omega \sin \omega \tau]Q \] + \{\gamma + \beta^{1/2}u_1 \omega \sin \omega \tau \mathbf{R} + \gamma P\} \mathbf{a} = 0 \] (12)

이기서

\[\Lambda = \text{diag}(\lambda_j^4), \quad C = \text{diag}(\sigma) \]

이고, \(\mathbf{P}, \mathbf{Q}, \mathbf{R} \)은 각각

\[p_y = \int_0^1 \phi_y \phi_y' \, d\xi \]

\[q_y = \int_0^1 \phi_y \phi_y'' \, d\xi \]

\[r_y = \int_0^1 \phi_y \phi_y'' \phi_y' \, d\xi \]

을 요소로 가지는 행렬로서 경계조건에 의해서 구할 수가 있다.

그리고, \(\mathbf{a} = [a_1, a_2, \ldots, a_N] \)는 일반좌표계로 쓰기서는 \(N \) 차의 모드좌표계를 나타낸다.

4. 수치 해석

4.1 안정성 해석과 시간응답

식 (12)에서 속도폭폭 \(u_1 = 0 \) 이 되면 정상상태 유동에서의 배관의 진동에 대한 문제로서 식은 혼히 접하는 다음식

\[M \ddot{\mathbf{x}} + C \dot{\mathbf{x}} + K \mathbf{x} = 0 \] (13)

의 형태가 되어 좌변 행렬의 고유치해석을 통해 복소고유치의 실수부가 0 이 되는 임계유속을 알 수 있고, 유속이 임계유속보다 빨라지면 배관의 좌물현상이 발생하는 것과 같다.

그러나 속도폭폭 \(u_1 \neq 0 \) 인 유동에서는 평균유속이 임계유속에 미치지 못하여도 조화모멘트의 주파수와 배관의 고유진동수의 관계에 따라 공진현상이 관찰 된다. 이는 parametric resonance라고 알려져 있는 것으로 박동주파수 \(\omega \) 가 \[\frac{2\omega_n}{k} \]

\(k = 1, 2, 3, \ldots \) 근처의 특정범위내에 포함되면 공진이 발생하게 되고, 유체의 속도 및 질량등에 의해 그 범위가 결정되어 진다. 여기서 \(\omega_n \)은 배관의 고유진동수이다.

이러한 공진에 의한 불안정영역을 판별하는 가장 쉽고 널리 알려진 방법으로 Bolotin's method\(^6\)가 있다. 이것은 시스템이 주기적으로 변할 때의 전체 해를 그 주기 T와 2T 와에서의 해로서 표현하는 방법으로 여기서는 박동주파수의 k/2 배와 k 배에 대한 귀에 근似수전개로서 해를 가져와 그 계수들에 대한 행렬식을 이용하는 방법이다.

즉, 다음식

\[\mathbf{a} = \sum_{k} \{ a_k \sin(\frac{1}{2}k\omega \tau) + b_k \cos(\frac{1}{2}k\omega \tau) \} \] (14)

을 식(12)에 대입하여 sin 함수와 cos 함수들의 계수들로 행렬을 구성할 수가 있고, 주어진 유체의 속도와 주파수 등의 상황에 따라 행렬식이 0 이 되는 조건을 찾으면 안정부양과 불안정영역의 경계를 알 수가 있게 된다.

특히, \(k = 1, 3, 5, \ldots \) 일 때를 primary resonance 라 하고 \(k = 0, 2, 4, \ldots \) 일 때를 secondary resonance 라 한다. 여기서 가장 큰 영향을 미치는 \(k = 1 \) 즉, \(\omega = 2\omega_n \) 일 때를 principal resonance 라 한다.
또한 식(12)의 응답에 대해서 보다 확실히 알기 위해서는 비선형 미분방정식 자체를 직접 시간에 대해서 수치해석적으로 구하는 방법이 있을 것이다. 비록 번거려진듯이 있었지만 각 영역에서 직접 수치해석을 위한 자주 진동과 강제 진동의 과도상태와 정상상태에서의 응답을 비교 하기 위해 4차 Runge Kutta 법을 이용하여 시간 응답을 풀어서 해석과 비교하여 보았다.

우선 식(12)를 양단고정 직관의 경우에 대해서 앞의 방법을 적용해 보면 다음과 같이 행렬과 관계식을 유도할 수가 있다.\(^{(1)}\)

\[
[G]\{\ddot{u}\} = \{(0)\} \tag{15}
\]

이때 불안정성의 경계는 다음식으로 구할 수가 있다.

\[
|G| = 0 \tag{16}
\]

식(16)에 의해 구한 결과는 Fig 4와 같다. 여기서 \(\omega_1\)은 배관의 1차 고유진동수이다.

Fig 4는 양단고정 직관의 1차 고유모드에 대한 불안정 영역을 나타내고 있는데, 뒷 부분의 불안정 영역이 principal resonance, 앞 부분이 secondary resonance 의 첫번째 공진영역에 해당되는 것이다.

Fig 4. 에서 볼 수 있듯이 백동성분의 진폭이 커짐에 따라 공진영역이 점차적으로 더 넓어짐을 알 수가 있다. 그리고 배관의 감쇠를 고려할 경우 백동 진폭이 특정 값 이하가 되면 parametric resonance 가 발생하지 않을 수도 있음을 알 수가 있다. \(\omega / \omega_1\) 이 정확히 2 근처가 되지 않는 것은 \(\omega_1\) 이 유체가 없는 배관의 고유진동수에 대해서 나타내기 때문이다. 일정 유속이 흐름때 배관의 고유진동수가 낮아지는 특성을 감안한다면 당연한 것으로 여겨질 것이다.

각 영역에서는 임의의 초기치에 대한 비감쇠 자주 진동 응답을 구한 결과를 Fig 5에 나타내었다.

불안정 영역에서는 유동에 의한 자주 진동의 영향으로 공진이 발생하여 응답이 발산함을 알 수 있고, 안정 영역에서는 일반 진동계와 마찬가지로 여러 모드의 합성에 의한 자주 진동 응답이 나타난다. 역시 감쇠가 어느정도 포함되면 시간이 지남에 따라 자주진동이 상쇄되어 사라짐을 알 수 있을 것이다.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig4.png}
\caption{Fig 4. Stability analysis of clamped both ends pipe \((\beta^{1/2} = 2, \gamma = 10, \nu_0 = 3) \)}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig5.png}
\caption{Fig 5. Time response \((u/u_0 = 0.4) \) \((a) \omega / \omega_1 = 1.1 \) (stable region) \((b) \omega / \omega_1 = 1.8 \) (unstable region) \((c) \omega / \omega_1 = 2.5 \) (stable region) }
\end{figure}
4.2 FRF 와 시간응답

파라메트릭 리스피스의 경우, 현재까지 많은 연구 결과가 발표 되었고 지금도 많은 연구가 이루어지고 있는데, 안정성 해석을 통한 불안정 영역을 결정하는 것이 대부분이다.

그러나 안정영역 내에서의 외부 가진력에 의한 강제 진동 응답 해석에 있어서도 유체 맥동성분의 영향이 고려되어야 할 것이다.

유선 강제 진동에 대한 정상상태에서의 응답 특성을 알아보기 위해 Fig.5(a)에서 같은 조건에 감쇠를 추가한 후, 충분한 시간이 지난 동안의 강제 진동 시간 응답을 Fig.6에 나타내었다.

또한 충분한 시간후의 시간 신호만을 따로 페내어 FFT 변환을 한 것을 Fig.7에 나타내었다.

일반적인 진동계에서의 강제 진동 성상상태 응답 주파수는 기존 주파수와 같지만 여기서의 경우에는 Fig.7에서 보이는 바와 같이 유체 맥동 주파수와 같은 주파수의 외부 가진력이 가해졌을 때의 강제 진동 응답은 기존 주파수의 조화 성분들에 한 성분을 취한 응답을 알 수 있다.

강제진동 주파수응답을 직접 구하기 위해 우선 식(12)의 우변에 가진력 항인 \(\tilde{f}(\pi f) \)를 추가하고 다음식

\[
\tilde{u} = \sum_{k=1,2,3...} \left\{ \tilde{a}_k \sin(k\omega t) + \tilde{b}_k \cos(k\omega t) \right\}
\]

(17)

를 대입하여 앞에서와 같은 방법으로 행렬을 구성하면 다음과 같이 된다.

행렬의 내부 요소들은 다음과 같이 표현된다.

(1) \(-\frac{(\kappa\omega)^2}{4} I + \Lambda + [u_0^2 - \gamma^2] Q + \gamma (P + R) + \frac{1}{2} u_t^2 Q\)

(2) \(-\frac{k\omega}{2} C - 2\beta u_0^2 \frac{k\omega}{2} P\)

(3) \(-\frac{k\omega}{2} C + 2\beta u_0^2 \frac{k\omega}{2} P\)

(4) \(-\frac{(\kappa\omega)^2}{4} I + \Lambda + [u_0^2 - \gamma^2] Q + \gamma (P + R) + \frac{1}{2} u_t^2 Q\)

(5) \(u_t u_0 Q\)

(6) \(-\beta u_0^2 \frac{k\omega}{2} P + \frac{1}{2} \beta u_0^2 \omega (Q - R)\)

(7) \(\beta u_0^2 \frac{k\omega}{2} P + \frac{1}{2} \beta u_0^2 \omega (Q - R)\)

-281-
\[(8) = u_i u_i Q \]
\[(9) = \frac{u_i^2}{4} Q \]
\[(10) = \frac{u_i^2}{4} Q \]
\[(5') = u_i u_i Q \]
\[(6') = -\beta^{\prime \prime} u_i \frac{k \omega}{2} p + \frac{1}{2} \beta^{\prime \prime} u_i \omega (Q - R) \]
\[(7') = \beta^{\prime \prime} u_i \frac{k \omega}{2} p - \frac{1}{2} \beta^{\prime \prime} u_i \omega (Q - R) \]
\[(8') = u_i u_i Q \]
\[(9') = \frac{u_i^2}{4} Q \]
\[(10') = \frac{u_i^2}{4} Q \]

이렇게 구성한 식에 맥동 주파수 \(\omega \) 를 변화 시켜가며 연립방정식을 풀어 FRF를 구한다.

이때의 응답은 가전주파수에 해당하는 \(\tilde{a}_i, \tilde{b}_i \) 뿐 아니라 \(\tilde{a}_2, \tilde{b}_2, \tilde{a}_3, \tilde{b}_3, \ldots \) 등 고차성분들에 대해서도 같이 구하여 지는데, 앞에서와 같은 조건에서 계산한 결과는 Fig 8과 같다.

Fig 8에서의 세 가지의 그래프는 각각 1차, 2차, 3차 성분에 해당하는 응답으로 시간응답에 의해 계산한 결과가 이와 비교하기 위해서는 각 조차 성분을 합리적으로 합으로 계산하면 시간응답과 같이값을 알 수 있다.

Fig 9는 Fig 8에서 응답에 해당하는 부분을 확대한 것으로 사전으로 표시한 부분은 형렬식이 음수가 되는 부분으로서 응답이 발생하는 부분이므로 FRF 상에서의 값은 무시하여야 한다.

Fig 9. Resonance region in FRF

계산 예로서 \(\omega = 10.75 \) 일때와 \(\omega = 23.0 \) 일때의 두가지에 대해 비교한 결과가 Table 1과 Table 2에 나타나 있다.

이 두경우는 Fig 8에서 세로줄로 표시한 두 부분이며 첫번째의 경우는 고유주파수의 1/2 배가 되는 위치의 근처로서 응답의 2차 성분이 맥동에 의한 과진이 발생되는 주파수와 근접하기 때문에 그렇지 않은 경우에 비해서 오차의 비율이 약간 더 높게 나타남을 알 수 있고 두번째의 경우에는 과진과는 거리가 다소 있는 부분으로서 오차율이 아주 낮음을 알 수가 있다. 다만 3차 성분의 값이 1차성분과 비교할때 오차의 비율이 비교적 높게 나타났지만 크기 자체가 무시할 수 있을만큼 너무 작기 때문에 전체의 응답 크기에에는 영향을 미치지 못함을 알 수 있다.

<table>
<thead>
<tr>
<th>(\omega)</th>
<th>RK4</th>
<th>FRF</th>
<th>error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.508e-4</td>
<td>2.871e-3</td>
<td>3.567e-3</td>
</tr>
<tr>
<td>1 (\omega_f)</td>
<td>4.838e-3</td>
<td>6.297e-3</td>
<td>5.242e-3</td>
</tr>
<tr>
<td>2 (\omega_f)</td>
<td>7.133e-3</td>
<td>-</td>
<td>6.969e-3</td>
</tr>
<tr>
<td>3 (\omega_f)</td>
<td>5.596e-4</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1. Comparison of the results at \(\omega = 10.75 \)

<table>
<thead>
<tr>
<th>(\omega)</th>
<th>RK4</th>
<th>FRF</th>
<th>error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.107e-3</td>
<td>1.108e-3</td>
<td>1.119e-3</td>
</tr>
<tr>
<td>1 (\omega_f)</td>
<td>2.024e-2</td>
<td>2.006e-2</td>
<td>2.032e-2</td>
</tr>
<tr>
<td>2 (\omega_f)</td>
<td>6.481e-3</td>
<td>-</td>
<td>6.617e-3</td>
</tr>
<tr>
<td>3 (\omega_f)</td>
<td>2.289e-5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2. Comparison of the results at \(\omega = 23.0 \)
여기서 구한 응답을 IFFT를 이용하여 시간응답을 만들어서 Runge-Kutta 법을 이용해서 직접 시간응답을 계산한 것과 비교한 것을 Fig 10에 나타내었다.

보는바와 같이 진폭 뿐 아니라 위상면에서도 아주 유사한 것을 확인할 수 있다.

\[\text{Amplitude} \]

\[0.0 \quad 0.5 \quad 1.0 \quad 1.5 \quad 2.0 \quad 2.5 \quad 3.0 \quad 3.5 \quad 4.0 \quad 4.5 \quad 5.0 \]

Fig 10. Time signal comparison of the results at \(\omega = 10.75 \)

5. 결론

배관 진동에 있어서 임계속도 이상의 유속을 갖는 유체로 인한 불안정성과는 달리 임계속도 이하일 때에도 유체의 맥동 성분으로 인해 공진현상이 발생될 수 있으며, 특히 조화적으로 변하는 유체에 의한 공진은 특정 영역으로 표현할 수 있으며 이러한 영역의 경계를 결정짓는 안정성 해석을 통해 맥동 진폭의 영향을 알 수 있었다.

즉, 맥동주파수 \(\omega \)가 \(2\omega_n/k, \) \(k=1,2,3,\ldots \) 근처의 특정범위내에 포함되면 공진이 발생하게 되고, 유체의 속도 및 질량등에 의해 그 범위가 결정되어 진다. \(\omega_n \)은 배관의 고유진동수

또한 안정 영역내에서 잔재 진동에 의한 응답도 근사적으로 직접 구할 수가 있고 그 결과가 시간응답과 비교했을 때 비교적 정확함을 확인할 수 있었다.

본 연구에서는 잔재 진동 응답의 결과 확인에 주안점을 두어 Parametric resonance에 대해서만 해석을 수행하였지만, 실제로는 \(\omega = (\omega_n + \omega_m)/k \), \(k=1,2,3,\ldots \)에서 발생하는 Combination resonance에 의한 영향도 추가적으로 고려되어야 할 것이 다.

참고 문헌