FXLMS 알고리듬을 이용한 덕트의 능동소음제어

Active Noise Control of Ducts Using the FXLMS Algorithms

류 경 완*, 홍 진 숙†, 정의 봉**
Kyungwan Ryu, Chinsuk Hong and Wei Bong Jeong

Key Words: Active Noise Control(능동소음제어), Adaptive Control (적응제어), FXLMS (Filtered-x LMS)

ABSTRACT

This paper investigates active noise control of ducts using Filtered-x Least Mean Square (FXLMS) algorithms to reduce noise transmission. Single channel FXLMS (SFXLMS) and multiple channel FXLMS (MFXLMS) algorithms are used to implement the active control systems. The transmission loss is significantly increased by SFXLMS but the sound pressure level (SPL) at the upstream of the error sensor is increased while that of downstream is very low. This increase of the upstream SPL causes the duct wall to vibrate and so to radiate noise. To prevent the wall vibration generated by the sound field upstream, global sound field control is required. To reduce SPL globally along the duct, active noise control using MFXLMS is implemented. We can then obtained globally reduced SPL. It is found experimentally that the vibration level, and so the radiated noise level, can be reduced by the active noise control using MFXLMS.

기술 설 명

\[x(n) \] 참조신호
\[s(n) \] 제어신호
\[d(n) \] 외란(제어대상)
\[e(n) \] 오차신호
\[c(n) \] 오차경로
\[c'(n) \] 예측된 오차경로

1. 서론

최근 DSP (digital signal processor)의 발달로 능동 소음 제어에 대한 연구가 많은 분야에서 활발히 진행되고 있으며 그 기술력은 이미 실용화 단계에 이르렀다[1]. 특히 자동차의 머플러 부분에 대한 능동 소음 제어는 유명 자동차 회사인 Ford가 등을 통해 빠르게 이루어지고 있으며 예전부터 최근에는 고급 자동차의 선택 사항이 아닌 기본 사항으로 설치가 되어 출시되고 있다[2]. 또한 머플러의 능동 소음 제어에서 소음 감소와 함께 인터내한 감소를 하였다[3].

† 교수; 부산대학교 기계공학부
E-mail: cshong@pusan.ac.kr
Tel: (051) 510-2484, Fax: (051) 511-3805

* 부산대학교 대학원 기계시스템설계
** 부산대학교 기계공학부

자동차 엔진이 머플러 소음 제어에 대한 관심은 매우 크다. 머플러 외에도 선박, 항공기, 장비 및 건축물의 공기 조화 공장(HVAC)에서 공기의 두성경로가 되는 덕트 또한 능동 소음 제어의 대상이 된다. 공기 조화 장치로부터 각 각 열 공기공급시 덕트는 소음의 전달경로가 되고 고주파 성분은 흡음재와 자외물 등에 의해 흡수되므로 설비안 전달되는 소음은 주로 저주파 대역의 성분이다. 덕트내의 저주파 소음은 필터링이 유지되어 전달되기 때문에 이에 따라 능동 소음 제어를 적용하면 효과적인 소음 감소가 가능하다.

덕트 소음 제어는 일반적으로 전달효율이 좋은 1차원 필터를 대상으로 한다. 따라서 능동 소음 제어를 구현할 때 주로 Single channel Filtered-X Least Mean Square (SFXLMS) 알고리듬을 이용하였다[4]. 그러나 SFXLMS 알고리듬을 적용한 제어 시스템의 경우 제어 스피커의 하류(downstream)쪽의 음압은 크게 줄어들지 못한 상류(upstream)쪽의 음압은 오히려 더 커지게 된다[5]. 이렇게 제어 전보다 더 커진 음압은 덕트 외벽의 진동을 가중시키게 되고 외벽 진동에 따른 덕트의 방사소음이 더욱 커질 우려가 있다. 머플러의 경우 전달손실(Transmission Loss, TL)로 평가되는 소음 차단 성능이 차량의 내, 외부에서 소음 감소 성능을 평가하였을 때 보다 낮을 수 있다. 즉, 소음에 대한 청각의 민감도가 낮을 수 있다. 이는 머플러 벽면의 진동 중각에 의한 방사소음의 영향을 고려하지 않았기 때문
이다. 공기 조화 장치의 경우도 마찬가지다. 적실의 토출
구로 전달되는 소음은 SFXLMS 알고리듬을 이용하여 제어
하더라도 덕트 외벽에서의 방사소음이 증가하여 적실로 유입된다면 실제 착각이 증가하는 성능은 덕트 축구에
서 측정한 성능보다 낮게 평가될 것이다.
Multi channel Filtered-X Least Mean Square
(MFXLMS) 알고리듬은 SFXLMS 알고리듬과는 달리 음장
의 전체적인 음압을 감소시킬 수 있는 알고리듬이다.6)
MFXLMS 알고리듬을 이용한 덕트 방음 제어 시스템의 경
우, 제어장치의 성능의 음악적 감소는 덕트 축구에
따라서 덕트 외벽의 진동에 의한 방사 소음을 크게 줄일 수
있다.
본 논문에서는 1차원 덕트 시스템에 대하여 SFXLMS 알고
리듬을 이용한 제어를 수행 할 경우에 발생 가능한 방사
소음을 마하노하여 해소하였고 그에 따른 대안으로 MFXLMS 알고리듬을 이용한 제어기를 구현하였다. 그리고 SFXLMS 알고리듬을 이용한 동체 소음 제어기의 성능과 서로 비교
하여 적절한 소음을 소음 성능을 정량적으로 해소하였다.

2. 제어 알고리듬

2.1 LMS 알고리듬

LMS (Least Mean Square) 알고리듬은 Fig. 1과 같은
블록스턴에서 오차신호의 파워를 최소화 시키는 방법을 말
한다.6) 여기서 $\Phi (n)$ 은 입력신호이고 $y(n)$ 은 필터의 출력신
호이다. 그리고 $d(n)$ 은 외면이 제어되어야 할 신호이다.

![Fig. 1. Block diagram of LMS using multiple error signals](image)

또한 $\lambda(n)$ 은 오차신호가 된다. LMS 알고리듬은 오차신호의
파워를 최소화 시키는 방향으로 $u(n)$의 계수를 갱신
(update) 하기 때문에 $u(n)$의 출력 $X(n)$은 $d(n)$에 근사하게
되고 결국 $\lambda(n)$은 0으로 수렴하게 된다. 그리고 오차신호가
0으로 수렴하면 $u(n)$은 $d(n)$의 출력을 향하는 임의의 시스템을
모델링했다고 할 수 있다. 그러므로 LMS 알고리듬은 주로
오차신호를 모델링하는데 이용되며 본 논문에서도 오차신호
모델링이라고 LMS 알고리듬을 이용하였다.
필터계수를 갱신할 때 쓰이는 알고리듬은 Steepest
descent 법7)이며 수식 (1)과 같이 표현될 수 있다.

$$u(n+1) = u(n) - \mu \frac{\partial \lambda}{\partial u}(n)$$ (1)

여기서 μ는 수렴계수이고 f는 시스템의 비용함수(cost function)이다. $f = e^2(n)$이고, $\lambda(n) = d(n) - x^T(n)w$ 이므로
$\partial f/\partial w = 2e(n)x(n)$이 된다. 그러므로 수식 (1)을
다시 쓰면 다음과 같다.

$$u(n+1) = u(n) + 2\mu e(n)x(n)$$ (2)

여기서 μ는 수렴계수이며 필터의 수렴속도를 결정하게 되
고 값이 클수록 빠른 수렴속도를 가진다. 그러나 μ가 $1/f^2$
를 넘으면 필터는 발산하게 된다7). 그러므로 적절한 μ
의 값을 수식 (3)과 같이 나타낼 수 있다.

$$0 < \mu < \frac{1}{f^2}$$ (3)

여기서 f는 필터값이고, f는 참조신호의 파워이다.

2.2 SFXLMS 알고리듬

동체소음제어에 가장 널리 사용되는 SFXLMS 알고리듬의
블록스턴은 Fig. 2와 같다. 블록스턴로부터 오차신호 $e(n)$ 은
수식 (4)와 같다.

$$\lambda(n) = d(n) - c(n)x^T(n)w$$ (4)

여기서 $c(n)$은 예측된 오차신호이다. 블록스턴로부터 알
수 있듯이 SFXLMS 알고리듬은 LMS 알고리듬에서 단지

![Fig. 2. Block diagram of SFXLMS using multiple error signals](image)

오차신호만 추가된 형태이므로 SFXLMS 알고리듬 역시 오
차신호의 파워를 최소화시키기 위해 계속해서 $u(n)$의 필터
계수를 갱신하게 되고 결국 $\lambda(n)$은 최소값으로 수렴하게 되
다. 필터계수 갱신은 LMS 알고리듬과 같이 Steepest
descent 법을 이용하여 $\partial f/\partial w = -c(n)2e(n)x(n)$가 되므로
SFXLMS 알고리듬은 수식 (5)와 같이 필터계수를 갱신하게
된다.

$$u(n+1) = u(n) + 2\mu e(n)x(n)$$ (5)

여기서 $\lambda(n)$은 필터링 된 참조신호, 즉 $\lambda(n) = x(n)c(n)$를
나타내고 이에 따라 \(\mu \)는 LMS 알고리듬의 수렴계수와는 달리 수식 (6)과 같은 범위를 가지게 된다.\(^{23}\)

\[
0 < \mu < \frac{1}{Kr^2}
\]

(6)

여기서 \(K \)는 필터길이, \(r \)은 필터링 된 창조신호의 파괴이다.

2.3 MFXLSM 알고리듬

MFXLSM 알고리듬은 SFXLSM 알고리듬을 단일 채널에서 다중 채널로 확장한 것으로 하나의 오차신호만을 관측하여 그 신호의 파괴를 최소화하는 SFXLSM 알고리듬과는 달리 \(K \)개의 오차신호를 관측하여 그 오차신호들의 파괴의 합을 최소화시키는 알고리듬이다. MFXLSM 알고리듬의 복록선도는 Fig. 3과 같다.

![Fig. 3. Block diagram of MFXLSM using multiple error signals](image)

Fig. 3의 복록선도에서 오차신호는 수식 (7)과 같이 나타낼 수 있고 그에 따른 비교함수 \(j^k \)는 수식 (8)와 같다.

\[
e_k(n) = d_k(n) - c_k(n)x^T(n)u_k \quad k = 1,2, \ldots, K
\]

(7)

\[
f = e_1^2 + e_2^2 + \ldots + e_K^2 = \sum_{k=1}^{K} e_k^2
\]

(8)

그리므로 MFXLSM 알고리듬은 앞서 설명했던 SFXLSM 알고리듬과 같이 steepest descent 법을 이용하여 수식 (9)와 같이 필터계수를 경신함을 알 수 있다.

\[
u(n + 1) = u(n) + 2\mu \left(\sum_{k=1}^{K} x_k(n)e_k(n) \right)
\]

(9)

여기서 수렴계수 \(\mu \)의 수렴범위는 변수 \(K \)에 의해 다음과 같이 올 수 있다.

\[
0 < \mu < \frac{1}{Kr^2}
\]

(10)

여기서 \(K \)는 필터길이, \(r \)은 필터링 된 창조신호의 파괴, 그리고 \(K \)는 오차신호의 개수이다.

3. 제어기 설계

Fig. 4에 농동 소음 제어를 적용할 막트와 MFXLSM 알고리듬을 이용한 농동 소음 제어 시스템의 구성도를 함께 나타내었다. 막트의 단면은 원형이고 직경 \(D \)는 100 mm이며 길이는 1790 mm이다. Fig. 5와 같은 막트 내에서 발생하는 음파가 창조파를 유지하는 최대 주파수를 \(f_{\text{cut-off}} \)주파수라 하고 그 주파수를 식 (11)에 의해 구할 수 있다.

\[
f = \frac{1.8k}{\pi D}
\]

(11)

여기서 \(k \)는 음속(m/s), \(D \)는 막트의 직경(m)이다. 대상 막트의 직경 \(D \)는 100mm이므로 \(f_{\text{cut-off}} \)주파수는 약 2kHz가 되고 일반적으로 이음 부분을 적용하면 0-2kHz 대역의 농동 소음 제어가 가능하다는 것을 알 수 있다. 본 연구에서는 전자 주파수 대역을 0-1kHz로 고려하였다.

또한 Fig. 4의 MFXLSM 알고리듬 구성도를 보면 소음원 (SPK1)은 막트의 한쪽 끝단에 설치하여 막트내에 교란음장을 생성시키고 이를 4개의 에러센서(MIC1-4)로 음장을 측정할 수 있도록 구성하였다. 제어시스템은 보안한 위치의 제어가 특정 모드의 노동에 인위적 제어를 받을 경우 그 모드가 발생하는 주파수의 제어실수율이 되지 않음은 가능하다.\(^{20}\) 관심 주파수 대역 내의 제어설정에 나머지 영향은 미치지 않는 제어시스템의 위치와 에러센서의 위치를 결정하기 위한 음향 모드 해석이 수행되었다. Fig. 5에서 보인 바와 같이 막트 내의 음향 모드를 구할 수 있었다. 음향 모드해석은 막트내의 음향매개물의 요소실험으로 모델링하여 수행하였고 해석은 LMS SYNOISE를 이용하였다. Fig. 5에서 보인 음향모드를 분석하여 제어시스템의 위치와 에러센서의 위치를 결정하여 Fig. 4에서 보인 바와 같이 제어시스템의
리셔트를 설치하였다. 제어스피커는 오차서 2번 및 3번 사이에 위치시켰고 오차서 1번과 2번 사이에 덱트 백면의 음량을 측정하기 위해 가속도계(ACC)를 설치하였다.

FXLMS 알고리즘을 적용한 농동 소음 제어기의 설계과정에서 시뮬레이션을 위해 SIMULINK를 이용하였다. Fig. 6은 FXLMS 알고리즘과 이를 다채널로 확장한 MFXLS 알고리즘을 이용한 제어시스템의 SIMULINK 모델을 보이고 있다. Fig. 6에서 primary path는 교란 소음원과 예리셔트 간의 전달함수로 SFXLMS는 하나이고 MFXLS에서는 4개를 사용하고 있다.

![Simulink model for SFXLMS](image1)

![Simulink model for MFXLS](image2)

SFXLMS에서 사용한 예리셔트는 Fig. 4에서 MIC 4를 이용하였다. 따라서 Fig. 6(a)의 P(z)는 교란 소음원과 예리셔트 4번 사이의 전달함수이고 C(z)는 제어스피커와 예리셔트 4번 사이의 전달함수이다. MFXLS에서는 Fig. 4에서 보인 4개의 모든 예리셔트를 예리셔트로 사용하였고 Fig. 6(b)에는 4개의 primary path가 모델링되어 있다. P1(z)에서 P4(z)까지 4개의 primary path는 교란 소음원과 각각의 예리셔트 사이의 전달함수를 나타내며 C1(z)부터 C4(z)까지는 제어스피커로부터 각각의 예리셔트 사이의 전달함수를 나타낸다. 앞에서 살펴본 바와 마찬가지로 SFXLMS와 MFXLS 알고리즘 내부에는 각각의 오차경로가 추가로 포함되어 있어 오차경로의 유동을 필터링한 신호가 LMS 알고리즘에 이용되게 된다.

3.1 유지요소 모델을 이용한 시뮬레이션

본 절에서는 덱트내의 음향매질을 유지요소로 모델링하여 얻은 이론모델에 대하여 제어기를 설계하고 그 성능을 시뮬레이션하였다. 제어기 설계를 위해 필요한 전달함수를 유지 요소 모델로부터 구하였고 모델은 Fig. 5에서 보인 모두해석을 수행한 모델과 동일한 모델을 사용하였다. 교란 소음원 및 제어스피커의 전달함수는 크기가 1인 평면도 주파수 특성을 보인다라고 가정하였다.

Fig. 7에 유지 요소 해석을 통해 얻은 덱트 모델을 대상으로 제어성능을 시뮬레이션한 결과를 나타내었다. 실현은 제어하지 않았을 때 교란음장을 각 마이크로폰에서 측정한 음압이다. 파선은 MIC 4를 에리셔트로 하는 SFXLMS 알고리즘을 이용한 농동 소음 제어 결과이며 점선은 모든 마이크로폰을 에리셔트로 사용하는 MFXLS 알고리즘에 의해

농동 소음 제어 결과이다. SFXLMS 알고리즘을 적용한 경우 제어스피커의 상위의 위치한 MIC1 과 MIC2에서 측정한 음압 스펙트럼은 공진주파수의 변화와 음압의 증가를 명확히 보이고 있다. 공진주파수의 변화에 SFXLMS를 적용한 경우 제어스피커의 위치에서 음과전달이 차단됨을 의미한다. 이렇게 차단된 공간으로 인하여 전체적인 공간이 줄어들게 되고 이 공간이 공전함으로써 공진주파수가 변한 것이다. 그러므로 제어스피커의 하위에 있는 MIC 3과 MIC 4의 음압 스펙트럼은 크게 감소하였음을 알 수 있다. 반면 MFXLS를 적용한 농동 소음 제어의 경우에는 모든 에리셔트를 균등하게 감소시켜 음장전체를 감소시키는 효과를 얻고 있음을 알 수 있다.

따라서 SFXLMS 알고리즘을 적용한 농동소음제어를 이용하여 전달순질을 증대시킬 수는 있으나 제어스피커 상위의 음압이 높아지기 때문에 덱트 상위의 외부를 통한 방사소음의 기여도에 대한 고려가 필요함을 알 수 있고, 이에 대한 대안으로 MFXLS 알고리즘을 적용한 농동 소음 제어를 이용하면 덱트 내부의 균등한 소음을 감소를 통해 덱트 외부전력에 의한 방사소음에 대한 기여도를 감소시킬 수 있음을 알 수 있다.
경로를 실제 덱트에 대하여 2점에서 설정한 LMS 알고리즘을 이용하여 모델링하였다. 그리고 모델링된 각 전달함수를 Fig. 6의 SIMULINK 모델에 반영하여 시뮬레이션을 수행하였다. Fig. 8은 미트 덱트에 대조적으로 실험모델을 이용한 제어기의 제어성능을 시뮬레이션한 결과를 보이고 있다. Fig. 7에서와 마찬가지로 실온은 제어하지 않았을 때 교란 음량을 각 마이크로폰으로 측정한 음압과 피손은 MIC 4를 예를 들어서 하는 SFXLMS 알고리즘을 이용한 농해 소음 제어의 결과이며 정선은 4개의 마이크로폰을 동시에 에러센서로 사용하는 MFXLMS 알고리즘을 이용한 농해 소음 제어의 결과이다. SFXLMS 알고리즘을 적용한 경우 제어스피커의 상류에 위치한 MIC1과 MIC2에서 측정한 음압 스펙트럼을 살펴보면 이론모델을 이용한 제어기를 적용한 경우와 마찬가지로 공진주파수의 변동과 음압의 증가가 명확히 보이지 않는 것을 볼 수 있다. 그러나 이러한 제어스피커 상류측의 음압 증가현상이 300 Hz이상에서는 명확히 보이지 만 저주파 대역에서는 나타나지 않았다. 그 이유는 해석모델에서는 교란 소음원과 제어스피커의 모델을 이상적인 전달함수로 가정하였으나 실험모델에서는 교란 소음원과 제어스피커의 저주파대역 성능이 좋지 않기 때문인 것으로 판단된다. 그리고 MFXLMS 알고리즘을 적용한 경우 모든 에러 센서에서 328Hz의 모드가 제어되지 않고 있음을 알 수 있다. 이는 제어스피커의 위치를 정정할 때 시뮬레이션으로 구한 값과 실제 노달라인의 위치와 차이가 있기 때문에 가능할 것으로 판단된다. SFXLMS 알고리즘을 이용하는 경우 제어스피커의 하류에 있는 MIC 3과 MIC 4의 음압 스펙트럼은 이론모델을 이용한 경우와 마찬가지로 크게 감소하였음을 알 수 있다. 또한 MFXLMS 알고리즘을 적용한 농해 소음 제어의 경우도 모든 에러센서를 균등하게 감소시켜 음장전체의 음압은 감소시키는 효과를 얻을 수 있었다. 따라서 SFXLMS 알고리즘을 적용한 농해 소음 제어의 경우 전달소실의 증가 및 방사 소음 증가 기여도에 대한 정상적인 특성이 이론적 모델에서와 동일하게 나타났다고 이에 MFXLMS 알고리즘을 적용한 농해 소음 제어를 이용하면 덱트 내의 증가된 소음감소 및 덱트 외벽진동에 대한 방사소음에 대한 기여도를 감소시킬 수 있음을 알 수 있다. 실험의 결과를 실험적으로 구하여 시뮬레이션을 했기 때문에 결과는 실험과 거의 일치할 것으로 생각된다. 덱트에 의해 모든 외부의 영향들이 경로상에 모두 포함되어 있으므로 SIMULINK 모델을 실험관에서 시뮬레이션 함으로써 실제 모델 도중 생길 수 있는 시행착오를 줄일 수 있었으며 특히 실험의 최적 수렴계수는 외부의 영향으로 인해 수식 (6), (10)에 나와 있는 미분계수는 정확히 일치하지는 않으므로 시뮬레이션을 통하여 최적 수렴계수를 찾을 수 있었다.

3.2 실측 모델을 이용한 시뮬레이션

제어기 설계 및 시뮬레이션에 필요한 모든 주요변수와 오차

Fig. 7. Calculated sound pressure levels at error sensor locations

-493-
4.1 실험장치

SFXLMS 및 MFXLMS 알고리즘을 이용한 각각의 능동 소음 제어기의 성능을 알아보기 위해 실험을 수행하였다. Fig. 9에 실제 실험 사진을 나타내었다. Fig. 6에서 보인 SIMULINK 모델에서 정선으로 표시된 단계 부분은 실험용 교체하고 제어기 부분은 dSPACE사의 RT1103모듈에 탑재하였다. 교란 소음원 및 제어 스피커는 JEC사의 RU-50 단트용 스피커를 이용하였고, 에러센서는 마이크로폰으로 B&K 4190을 Fig. 9(a)에서 보인 바와 같이 설치하였다.

각 센서의 위치는 Fig. 4에서 보인 위치와 동일하다. 참조 신호는 음향학적 피드백 현상을 피하기 위해 신호발생기에 서 교란 소음원으로 보내는 신호를 직접 사용하였다. 가속도 센서는 B&K 4393을 에러센서 1번과 2번 사이에 설치 하였다. 실시간으로 FXLMS 알고리즘에 의해 제어가 수행되는 현상을 관찰하기 위해 fig. 9(b)에서 보인 바와 같이 주파수 분석기(B&K Pulse)를 이용하였고, 수렴 후 각 에러 센서에서 신호를 받아 주파수 응답을 얻었다.

4.2 실험 결과

Fig. 10은 각 에러센서에서의 음압 스펙트럼이다. 역시 마찬가지로 실험은 제어하지 않았을 때 교란음장을 각 마이크로폰에서 측정한 결과이고 과선은 MIC 4를 에러센서로
사용하는 SFXLSM 알고리듬에 의한 농동소음재이 결과이며 정선은 4개의 마이크로폰을 에리셈서로 사용하는 MFXLSM 알고리듬에 의한 농동소음재이 결과이다. SFXLSM 알고리듬을 적용한 경우 제어스피커의 상류에 위치한 MIC 1과 MIC 2에서 측정한 음압 스펙트럼은 제어전과 비교하여 더욱 증가하였음을 알 수 있고 제어스피커의 하류에 위치한 MIC 3과 MIC 4의 음압 스펙트럼은 크게 감소하였음을 알 수 있다. MFXLSM을 적용한 농동재이의 경우는 모든 에리셈서에서의 음압을 급격하게 감소시켜 음장전체를 효과적으로 제어할 수 있었다. 이 결과는 이론모델을 이용하여 시뮬레이션한 결과와 정성적으로 유사한 결과를 보이고 있으며, 실측을 통해 산재한 제어기의 의한 제어결과는 정량적으로 거의 일치하는 결과를 얻었다. 제어스피커의 난은 성능에 의해 200Hz 이하의 저주파 지역의 제어성능이 나쁘게 나타나는 현상도 동일하게 나타나였으며 모든 에리셈서에서 32Hz의 소음이 제어되지 않는 현상도 동일하게 나타났다.

앞서 제어기 설계 및 시뮬레이션으로부터 전동에 의한 방사소음의 영향에 대한 가능성을 제시하였다. 이를 실험실에서 실험을 통하여 정량적인 확인을 하기위해 기속도계, 펜드 외벽에 설치하고 전동을 측정하였다. Fig. 11은 에리셈서 1번과 2번 사이의 위치인 $x=0.4m$에서 가속도를 측정한 결과이다. 대선은 제어하지 않았을 때의 가속도 수준이고 파선은 2번 마이크로폰을 에리셈서로 사용하는 SFXLSM 알고리듬에 의한 농동 소음 제어 상태에서의 가속도 수준이다. 정선은 4개의 마이크로폰을 모두 에리셈서로 사용하는 MFXLSM 알고리듬에 의한 농동소음재이 상태에서의 가속도 수준이다. 결과로부터 SFXLSM을 적용한 농동소음제어 상태에서는 전반적인 정확성을 증대시킬 수는 있으나 덕트 상류의 벽면의 가속도 수준을 증가시켜 덕트 외벽을 통한 방사소음의 기여도가 증가함을 보였다. 그리고 MFXLSM을 적용한 농동소음제어를 이용하여 덕트 내외의 공문한 소음감소로 덕트 외벽전동에 의한 방사소음에 대한 기여도를 감소시킬 수 있음을 알 수 있었다. 고온 소음원 및 제어스피커의 200Hz이하 저주파 성능이 구하나 없이 실험으로 저주파 대역에서의 전동의 영향을 명확히 제시하는 것은 다소 문제되었다. 그러나 본 연구에서 사용한 덕트나 일반적으로 사용하는 공기조화장치의 덕트는 저주파 대역의 소음과 구조물의 진동의 효과적인 영향이 발생함으로 방사소음의 영향이 매우 컸 것으로 사료된다.

Fig. 10. Measured sound pressure levels at error sensor locations

Fig. 11. Measured acceleration levels of the duct wall at $x=0.70m$
5. 결 론

본 연구는 기존의 SFXLMS 알고리듬을 이용한 농동 소음 제어 상태에서 발생할 수 있는 방사소음에 관한 연구이다. 이를 위해 SFXLMS 알고리듬과 SFXLMS 알고리듬의 다재널 확장으로 볼 수 있는 MFXLMS 알고리듬을 비교해 보았다. SFXLMS 알고리듬은 제어스피커의 하류쪽에 음압을 효과적으로 차단하였지만 상류 쪽 외벽의 전동을 증가시켜 그로 인한 2차 소음이 발생 할 수 있음을 실험과 시뮬레이션을 통해 입증하였다. 또한 MFXLMS 알고리듬을 이용하면 2차 소음의 원인이 되는 덱트 외벽의 전동을 제어할 수 있다는 사실을 확인 하였 다. 제어스피커의 상능 제한으로 인해 저주파 대역의 성능을 실험을 통해 정량적으로 확인할 수는 없었다. 그러나 해사모델을 통해 SFXLMS 알고리듬에 의한 제어 음압 증가의 성과성을 보였고 음향, 구조전동의 연장이 강한 저주파 대역에서 외벽의 전동에 의한 방사소음의 기여 가능성을 제시하였다.

참 고 문 현

(2) Byron Mathioudakis, 2008, “Comforting the customer” is the goal with FG Falcon as refinement levels improve, Retrieved 17 February 2008, from autotrader's website: http://www1.autotrader.com.au/m ellor/mellor.nsf/carshowroomstory/ReadForm&ID=08FF7004DF010719CA2573F0001B1EDF

